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This document is a description of how to formulate the look-ahead dy-
namic simulation problem using reduced Y-bus formulation for classical model.

Power system dynamic simulation is a critical function for power system
transient stability analysis. It computes the system response to a sequence of
large disturbance, such as sudden changes in generator or load, or a network
short circuit followed by protective branch switching operations.

Basic Equations

The dynamics of a power system can be represented by a set of first-order
differential and algebraic equations (DAE):

{

ẋ = f(x,y)

0 = g(x,y)
(1)

where the boldface denotes vector, x represents a vector of state variables
(e.g., generator rotor angles and speeds), and y represents a vector of alge-
braic variables (e.g., network bus voltage magnitudes and phase angles, or
real and imaginary parts of the bus voltage).

When generators are represented using the classical model, the swing
equations of generator i in per unit are:

δ̇(i) = ωB(ω(i) − ω0) (2)

ω̇(i) =
ω0

2H(i)

(Pm(i) − Pe(i) − D(i)(ω(i) − ω0)) (3)
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where ω(i) is the per unit speed for generator i, ω0 is the per unit synchronous
speed, ωB is the base electrical speed in radians per second, δ(i) is the angular
position of the rotor of generator i in electrical radians with respect to a
synchronously rotating reference, H(i) is the inertia constant of generator i

normalized by the system base, Pm(i) and Pe(i) are the mechanical power
input and active power at the air gap of generator i, and D(i) is the damping
coefficient.

For each generator internal bus i, the injected current in system reference
frame can be expressed as

I(i),Ire(i) + jIim(i) =
n

∑

k=1

Y(ik)E(k) (4)

where Y(ik) is the (i, k) element in Yred. Let E(k) = Ere(i) + jEim(i) and
Y(ik) = G(ik) + jB(ik), resolving (4) into real and imaginary part yields

Ire(i) =
n

∑

k=1

[Ere(k)G(ik) − Eim(k)B(ik)] (5)

Iim(i) =
n

∑

k=1

[Ere(k)B(ik) + Eim(k)G(ik)] (6)

The transformation from machine dq0 reference to system reference frame is

[

re

im

]

=

[

sinδ cosδ

−cosδ sinδ

] [

d

q

]

. (7)

In classical model, since the d-axis of internal bus voltage E ′

d = 0, applying
the above transformation to (5) and (6), after manipulation, yields

Ire(i) =
n

∑

k=1

[cosδkE
′

q(k)G(ik) − sinδkE
′

q(k)B(ik)] (8)

Iim(i) =
n

∑

k=1

[cosδkE
′

q(k)B(ik) + sinδkE
′

q(k)G(ik)] (9)

Iq(i) = cosδIre(i) + sinδim(i) (10)
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where E ′

q(i) is the q-axis of internal bus voltage of generator i, and Iq(i) is the
injected current. The active power at air gap can be calculated as

Pe(i) = E ′

q(i)Iq(i) (11)

Combining (2), (3) and (11) results in a set of DAE in the same form as (1).
The state variables x are:

x =
[

δ(1), ω(1), ..., δ(i), ω(i), ..., δ(n), ω(n)

]T
(12)

and the algebraic variables:

u =
[

Id(1), Iq(1), ..., Id(i), Iq(i), ..., Id(n), Iq(n)

]T
(13)

Reduced Y-bus Formulation

Let Y (with a dimension equal to m by m) denote the nodal admittance
matrix of an m-bus system comprised of n generator buses and m − n load
buses. After adding machine internal buses and include load impedance
into the admittance matrix, resulting in an extended Y-bus – Y′′ (with a
dimension equal to m + n by m + n). The network equation becomes:

[

IE

0

]

= Y′

[

E

V

]

, (14)

where Y′ =

[

Ynn Ynm

Ymn Ymm

]

, IE is the injection currents, E is the internal

generator voltages, and V is the bus voltages. The network equations is
reduced to

IE = YredE, (15)

where Yred = Ynn − YnmY−1
mmYmn.

Woodbury Method

The Woodbury lemma1 claims that the inverse of a rank-k correction of a

matrix can be computed by doing a rank-k correction to the inverse of the

1M. A. Woodbury, “Inverting modified matrices”, Memorandum Rept. 42, Statistical

Research Group, Princeton University, Princeton, NJ, 1950, 4pp.
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original matrix, where k is significantly smaller than the size of the original
matrix.

Given X = Y−1
mmYmn and a switching action causing an incremental

change ∆Ymm to the system admittance matrix Ymm, the following formula
is applied to compute (Ymm + ∆Ymm)−1Ymn, using

(Ymm + UBV)−1Ymn = Y−1
mmYmn −Y−1

mmU(B−1 + VY−1
mmU)−1VY−1

mmYmn

(16)
where ∆Ymm = UBV, and U, B, and V can be formulated based on the
incremental change (such as line tripping). Since Y−1

mmYmn is already com-
puted from the original matrix, and U, B, and V are low dimensional highly
sparse matrices, the computational cost involved in (16) is much lower than
inverting Ymm itself.

Numerical Integration

The modified Euler Method is used for the numerical integration in the dy-
namic simulation process.
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